Paper code: 13512 1512

B.Sc. (Computer Science) (Part 2) Examination, 2017 Paper No. 1.3 NUMERICAL ANALYSIS

Time: Three Hours]

[Maximum Marks: 50

Note: Attempt five questions. All questions carry equal marks.

1. (a) Use Lagrange's formula to find f(6) from the following table:

X	f(x)
2	18
5	180
7	448
10	1210
12	2028

(b) The population (in thousands) of a town in the year 1931,, 1971 are as ahead:

Year	Population
1931	15
1941	20
1951	27
1961	39
1971	52

Find the population of the town in 1946 by applying Gauss's backward formula.

- 2. (a) Use the Milne's method to solve the equation $y' = x y^2$ with y(0)=0 from x=0 to x=1.
- (b) Use the Runge-Kutta method to approximate y when x=0.1 given that x=0 when y=2 and $\frac{dy}{dx}=y-x$.
- 3. (a) Find a real root of the equation $x = e^{-x}$ using the Newton-Raphson method.
- (b) Find the cube root of 10 correct to three decimal places by Regula-Falsi method.
- 4. (a) Evaluate $\int_0^6 \frac{1}{1+x^3}$ by Simpson's one-third rule by dividing the interval into 6 parts.
- (b) Evaluate $\int_0^6 t \sin t dt$ by Trapezoidal rule.
- 5. (a) Solve the following equations by Gauss Elimination method:

$$2x + y + z = 10$$

$$3x + 2y + 3z = 18$$

$$x + 4y + 9z = 16$$

(b) Solve by Jacobi iteration method the system of equations:

$$4x + y + 3z = 17$$

$$x + 5y + z = 14$$

$$2x - y + 8z = 12$$

- 6. (a) State and prove Newton's-Gregory formula for backward interpolation.
- (b) Apply Newton's dividend difference formula to find the value of f(8) if f(9)=3, f(3)=31, f(6)=223, f(10)=1011, f(11)=1343.
- 7. (a) Find the function u_x in powers of x-1 given that

$$u_0 = 8$$
, $u_1 = 11$, $u_4 = 68$, $u_5 = 123$.

- (b) Write short notes on the following:
 - 1. Relative Error and Absolute Error
 - 2. Percentage Error and Round Off Error
- 8. (a) Solve the system linear of equations by the Gauss-Seidel method (4 iterations):

$$2x_1 + 7x_2 + x_3 = 19$$

$$4x_1 + x_2 + x_3 = 3$$

$$x_1 + 3x_2 + 12x_3 = 31$$

- (b) Solve the following:
- (i) Prove that:

$$(1 + \bigwedge)(1 - \nabla) = 1$$

(ii) Prove that:

http://www.mjpruonline.com Whatsapp @ 9300930012 Your old paper & get 10/-पुराने पेपर्स भेजे और 10 रुपये पार्ये,

$$E = (1 - \nabla)^{-1}$$

.....END.....